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Abstract
Existing memory reclamation policies on mobile devices
may be no longer valid because they have negative effects
on the response time of running applications. In this paper,
we propose SWAM, a new integrated memory management
technique that complements the shortcomings of both the
swapping and killing mechanism in mobile devices and im-
proves the application responsiveness. SWAM consists of
(1) Adaptive Swap that performs swapping adaptively into
memory or storage device while managing the swap space
dynamically, (2) OOM Cleaner that reclaims shared object
pages in the swap space to secure available memory and stor-
age space, and (3) EOOM Killer that terminates processes in
the worst case while prioritizing the lowest initialization cost
applications as victim processes first. Experimental results
demonstrate that SWAM significantly reduces the number
of applications killed by OOMK (6.5x lower), and improves
application launch time (36% faster) and response time (41%
faster), compared to the conventional schemes.
CCS Concepts
• Human-centered computing→ Mobile devices.
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Figure 1: Memory reclamation facilities on mobile devices.
OOMK/LMK were enabled since 2008. ZRAM and Swap were
enabled since 2014 and 2016, respectively. The striped gray
bar indicates that the swap operation is not activated if there
is available ZRAM space when both ZRAM and Swap are
enabled. LMK has been replaced by LMKD since 2018. The
table refers to the OOM score, memory threshold, and group
name of applications that can be killed by LMKD.
MobiCom ’23), October 2–6, 2023, Madrid, Spain. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3570361.3592518

1 Introduction
Today, as the memory capacity in general-purpose comput-
ing systems may not scale to memory consumption trends
of the contemporary applications, the memory shortage is
a well-known factor that negatively affects the overall sys-
tem performance. For example, deep learning or cloud ser-
vices in a server environment require a significant amount
of memory to perform their memory-intensive operations
simultaneously on large amounts of data, and such applica-
tions used to reveal memory shortage problems when their
operations require peak memory space. Meanwhile, in mo-
bile devices, the memory shortage problem may be more
serious because (1) the number of applications that reside
in memory increases over time, and (2) the available phys-
ical memory space cannot be easily extended to mitigate
the problem. There have been many efforts [8, 15, 16, 22,
32, 43, 44, 46, 55, 64, 71] to mitigate this problem in mobile
environments. Figure 1 shows the recent history of memory
management technologies in mobile devices. As shown in
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Figure 1, the operating system on mobile devices has been
adopting two types of mechanisms, swapping and killing,
since 2008 [6, 13, 25, 35, 40, 52, 56–59, 67]. In mobile de-
vices, when the memory utilization becomes around 60%,
the ZRAM/Swap secures the available memory space bymov-
ing some memory pages occupied by processes to the swap
area on the memory or storage devices [4, 7, 15, 45, 63, 71].
However, these approaches negatively affect application re-
sponse time when the processes re-access the swapped-out
pages; it requires extra time to reload the data into mem-
ory. If the memory utilization gets close to 80% or 90%, Low
Memory Killer Daemon (LMKD) and Out-of-Memory Killer
(OOMK) start to kill applications to reclaim a large amount of
memory space at once [10, 34]; but, it also suffers from slow
launch timewhen a user relaunches the applications killed by
LMKD/OOMK [65]. Note that application response/launch
time is very important in that it directly affects the user
experience1 in mobile environments where each device is
dedicated to each user. Therefore, traditional memory man-
agement schemes (e.g., Swap and OOMK) should be revisited
and reformed to efficiently address this issue.
In this paper, we propose SWAM, which efficiently or-

chestrates the traditional swapping and killing schemes with
three key components. (1) To efficiently handle swapping
and eventually to reduce the response time of applications,
Adaptive Swap dynamically adjusts swap space and pro-
vides two independent paths for swapping: the fast path
which performs swapping onto memory and the slow path
which performs it onto underlying storage devices. (2) To
secure the available swap space of SWAM, OOM Cleaner
preferentially reclaims the swapped-out SO pages that in-
clude the contents of shared object (.so) files of each appli-
cation (we call this swap-clean in this paper). (3) To reduce
application launch time, EOOMKiller, which operates based
on the mechanism of traditional OOMK, effectively kills the
applications with the shorter restart time among the running
applications by getting a hint as to their restart time.
For our evaluation, we implemented SWAM in an An-

droid mobile device [17] which occupies 83.8% (5.3 / 6.3
billion, 2021) of the global market [3, 36], and conducted sev-
eral experiments to confirm the effectiveness of SWAM. Our
evaluation results unequivocally demonstrate that SWAM
guarantees available memory space and quick response time
for the running applications by gracefully selecting victim
applications under several memory pressure scenarios. Espe-
cially, in the experiments on a mobile device with 8 GB RAM
[31], SWAM considerably reduces the number of applications
killed by OOMK by up to 6.5 times, and improves application
launch time (36% faster) and application response time (41%

1User experience refers to the overall experience of perception, reaction,
and behavior that users feel and think while using the products and services.

faster), compared to the conventional schemes. In summary,
the major contributions of this paper are as follows.
(1)We first study how the Swap and OOMK of conventional
operating systems secure available memory space and an-
alyze the side-effects of their memory space reclamation
mechanisms (§2 and §3).
(2) We introduce a novel mobile-aware memory manage-
ment scheme, SWAM, motivated by our observations, and
describe how SWAM complements the shortcomings of the
conventional swapping and killing mechanisms in detail (§4).
(3) We perform a comprehensive evaluation of SWAM us-
ing various mobile workloads on the state-of-the-art mobile
devices and compare SWAM with the existing policies in-
cluding NAND-swap, ZRAM, and ZRAM/NAND-swap (§5).
2 Background
Generally, the Linux kernel reclaims pages (in the order of
anonymous page, buffer, dentry, inode, and process) when the
memory space for new allocation is insufficient. In Linux,
the Kernel Swap Daemon (KSWAPD) [8, 71] is responsible
for reclaiming the memory region that is being used by ap-
plications (i.e., pages). The KSWAPD wakes up periodically,
and when the amount of memory space in use exceeds a pre-
defined threshold, it begins memory space reclamation. In
spite of the efforts of KSWAPD, if the available memory space
is still insufficient, the kernel inevitably runs OOMK that
scans victim processes and kills them to reclaim the whole
memory space belonging to them. Meanwhile, the Android
platform adopts and exploits more reclamation steps over the
Linux kernel because of the limited hardware resources of
mobile devices; each step is triggered in the order of ZRAM,
Swap, LMKD, and OOMK (see Figure 1). In this section, we
discuss more details on the memory management methods,
categorizing them into swapping and killing schemes.
2.1 Do Not Kill Processes
Swap is a virtual memory mechanism that expands avail-
able memory space with compressed RAM and/or storage
devices. In this section, we elaborate on RAM-class swap and
storage-class swap with their pros and cons.
RAM-class swap: Linux has ZSwap and ZRAM which mi-
grate recently unused pages to a dedicated RAM region
[2, 5, 11, 34, 41, 50, 66]. ZSwap and ZRAM are the same
in that they compress victim pages and store them in a por-
tion of DRAM (i.e., swap area) to reduce the I/O overhead
of swapping, while ZSwap also supports swapping onto the
storage devices.

In the early days, the mobile platform adopted ZRAM be-
cause of the hardware limitations (i.e., limited lifetime and
capacity) of the NAND-based mobile storage media (e.g.,
eMMC and SD Card); ZRAM employs the swap area only
on DRAM without it in the underlying storage devices. In
Android platform, the ActivityManager [19] keeps a list of
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Figure 2: The trends in the price of DRAM (1 GB) and the size
of DRAM along with the amount of swap space in DRAM on
mobile devices
threads that are unlikely to run but consume more memory
space than other threads, so that ZRAM can choose victim
pages more efficiently. ZRAM compresses and transmits the
victim pages of the threads identified by the ActivityManager
into the swap area in memory when the physical memory
space is insufficient. Besides, Android application framework
(e.g., onTrimMemory [18]) notifies the applications that con-
stantly consume more and more memory space to reduce
their memory usage if ZRAM cannot secure the desired free
space on time. The latest ZRAM (Linux 4.14 or later) sup-
ports the storage-class swap to use the storage device as a
backing-store like ZSwap [11, 34].
Storage-class swap: Various types of systems use storage-
class swap because storage media generally costs less than
DRAM [41, 45, 71]. Because the swap space in the storage
device can be emulated as a memory space, this approach
is especially useful in the systems where some processes
request a large amount of memory space temporarily [12].
After a series of innovations on storage technologies, NAND
flash is becoming more affordable and higher-performance
storage media. For example, embedded Universal Flash Stor-
age (eUFS) 3.1 (2020) has throughput of 2,100 MB/s read
and 1,200 MB/s write, which is 8x and 12x faster, respec-
tively, than the embedded MultiMedia Card (eMMC) 5.0
(2015) [1, 61]. With higher performance storage devices, mo-
bile platforms have started to employ storage-class swap
since 2016 [6, 35, 56–59, 67]. Note that the improvement in
the robustness of NAND flash storage devices, assisted by
over-provisioning and wear-leveling techniques, has also
enabled the storage-class swap to be employed in mobile
devices as well.
2.2 Do Kill Processes
With the mobile platform, the Linux kernel may secure mem-
ory space by killing low-priority processes. In this section,
we elaborate on user-mode LMKD and kernel-mode OOMK.

LMKD kills user processes according to the OOM score
of applications [13, 25] when the available memory space
gets smaller than the pre-defined threshold (see Figure 1).
When LMKD fails to secure enoughmemory space, the Linux
kernel triggers OOMK. OOMK sequentially kills running

(a) Swapping (b) Memory (c) SO-symbol (d) XML-UI
Figure 3: The 3 kinds of performance impacts (i.e., response
time, memory usage, initialization latency) with 4 sources
(e.g., swap, memory, SO, and XML) caused by conventional
swapping and killing operations
processes based on the following heuristics [10, 46]. (1) It
identifies candidate processes that have a large number of
pages, by calculating the amount of memory space allocated
to each candidate process. (2) Then, it excludes the following
processes from the candidates: long-running processes in a
batch way, processes that fork a few child processes, pro-
cesses with root permission, processes in accessing hardware
resources, and Init/Systemd (PID 1). (3) Finally, it kills the
lowest priority processes one by one from the remaining
candidates until enough memory space is secured.
Note that most applications in mobile devices adopt a

server-client model and each application runs in a client
mode that sends and receives data to/from the remote servers
to provide its service [43]. Therefore, killing operations caused
by LMKD or OOMK may have tolerable impacts on user ex-
perience because each application can restore its state later
by connecting to its server.
3 Observation
Figure 2 illustrates the trends of the memory technology in
terms of price and capacity in mobile devices; the price is
plummeting while the capacity is exploding over time [1,
6, 57, 58]. Unfortunately, today’s mobile devices still need
the aforementioned memory reclamation operations even
though they have enriched DRAM capacity. The reason be-
hind this is that the application development paradigm in
mobile environments has shifted from small memory con-
sumption toward huge ones; contemporary applications re-
quire more and more memory space. In addition, users usu-
ally execute applications (e.g., video/audio players, internet,
and social media) and use them without terminating until
rebooting or running out of battery. As a result, even with
massive amounts of DRAM space, the memory shortage
problem still persists. On the basis of swapping and killing
schemes, memory management policies for mobile platforms
have extensively been investigated. But, unfortunately, they
barely focused on the side effects of resource scheduling that
may induce negative impacts in mobile systems.
In this section, we introduce three kinds of major per-

formance impacts with the explanation on the related side
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effects. To deep dive into the behaviors of traditional swap-
ping and killing operations, we conducted various evalua-
tions while collecting raw data using dumpstate, dumpsys,
and adb commands. First, we conducted evaluations on four
popular commercial mobile devices (e.g., Samsung Galaxy
S9+, S10, S20, and S21 [62]) in manufacturers’ initial states to
understand the overheads caused by the memory shortage
problem. Figure 3 shows the average performance impacts
measured on the four commercial mobile devices. We mea-
sured the response time of applications (Figure 3(a)) and the
total memory usage of applications (Figure 3(b)) when the
available memory space is insufficient with the boot-up step.
Next, we measured the latency derived from the SO-symbol
lookup (Figure 3(c)) and XML processing (Figure 3(d)) by
running top-ranked representative applications from [26].
We first targeted 15 top-ranked representative applications
[26] to assure evaluation reliability, because the evaluation
results may be different according to the design structure
of SO and the operation pattern of XML-UI. To the best of
our knowledge, the cost of GOT entry and Symbol lookup
is strongly dependent on the design structure of SO files.
Therefore, for SO-symbol lookup experiment (Figure 3(c)),
we additionally selected 45 applications [26] to investigate a
wider range of applications. In summary, we targeted about
60 applications since the creation cost of GOT entry and
Symbol lookup is diverse according to the design structure
of SO files, and Figure 3(c) shows our test results on average.
Finally, we studied the XML-UI operation patterns based
on 15 representative applications that use the UI interfaces
intensively (Figure 3(d)).
3.1 Delays in Response Time
For fast response time, users of mobile devices commonly
tend to keep launched applications in memory until reboot-
ing or running out of battery, even though the applications
are not frequently used. This trend indicates that the mem-
ory space can get steadily exhausted in that the number of
active applications increases over time. If the memory space
is insufficient for a new application to start execution, the
platform triggers swapping operations to intelligently handle
the memory shortage issue. In this case, the swapping oper-
ations negatively influence the response time of the running
applications. Interestingly, the same phenomena can occur
right after the boot-up step because the platform starts many
applications at once in the background. To verify our intu-
ition, we investigated how the response time is affected by
the swapping operations using dumpsys and adb commands
[18].
Figure 3(a) illustrates the evaluation results of how the

response time of running applications is fluctuated after the
first swap-out operation; the response time had been mea-
sured after completing the boot sequence and launching

Figure 4: Symbol lookup procedure for SO files
applications. As shown in Figure 3(a), the response time of
an application increases by 1.9 times on average when it
meets the first swap-out operation. Meanwhile, if the swap
area ends up full due to high memory consumption of appli-
cations, the response time increases by 3.1 times; also, it may
eventually trigger OOMK operation to secure the available
memory space.

Observation 1: The impacts of swapping on the response
time are not negligible and an effective swapping mechanism
is more important in modern mobile devices.
3.2 Memory Space Consumption
As we know, the Android platform allows running a set
of background applications to handle its own functional-
ities (e.g., notification, network communication, I/O opera-
tion, location information transmission, and data collection)
[14, 27, 28, 37, 43, 70]. Such background applications can
cause a negative impact on the response time of running
foreground applications in that they occupy large amount
of memory space after booting [16] and may lead to fre-
quent memory reclamation. To confirm our intuition, we
measured how much memory space would be consumed by
the background applications using the dumpstate command.
Figure 3(b) shows the amount of memory usage of the

background applications running onmobile devices. As shown
in the figure, the background applications, which run with-
out any interaction with users, are allocated about 31% of
the total memory space (2.46 GB of the total 8 GB). How-
ever, such memory space consumption causes two problems
because it can frequently trigger operations for memory
reclamation. First, the delay incurred by memory reclama-
tion can exacerbate the launch time and response time when
a user runs an application in the foreground. Note that, as
such interferences get more frequent over time, users may
feel that their applications are not working in a normal way.
Second, if the memory space occupied by the background ap-
plications is reclaimed by OOMK to secure available memory
space, it may have a serious impact on the platform service
due to the absence of background functionalities. Therefore,
it is important to secure memory space without killing the
background applications.
Observation 2: Efficient memory space management is

needed not only to support a decent level of user experience
but also to keep up with the platform service.
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3.3 SO-Symbol Lookup Cost
In Android, native SO (shared objects, .so) files [21] help to
save the memory resources by sharing the memory space
of SO files among the applications. In this section, we first
describe how SO files are handled to understand the cost
incurred by sharing SO-symbols.
Figure 4 shows how applications look up symbols of SO

files on memory space. Applications generally do not in-
clude symbols of SO files in their own .text area so that
memory space for such symbols can be shared across appli-
cations; thus, applications must use the symbol table to keep
all memory addresses of the symbols at run time. As shown
in Figure 4, to conserve memory space, the platform employs
lazy binding policy [47] that delays the creation of entries
in the Procedure Linkage Table (PLT) or Global Offset Table
(GOT) until one of the SO-symbols in the symbol table is
accessed. When a symbol is initially accessed, the linker and
loader [47] start to scan all the symbols so as to create the
entries in PLT and GOT. To confirm the time consumed by
the lookup procedure for SO files, we measured the latency
of each step taken during initial access and discovered that
symbol lookup ( 3 , 4 ) and GOT entry generation ( 5 ) use
65% and 35% of the total SO-symbol lookup time, respectively
(See Figure 3(c)).

Now, let us observe how many SO files are actually shared
across applications. For our observation, we investigated
the SO files used in 60 top-ranked mobile applications men-
tioned in [26]. Surprisingly, we found that, among the 60
applications, only 5 applications (8%) are sharing some SO
files. In other words, the majority of the applications (92%)
never share their SO-symbol files with others, despite the
fact that they incur SO lookup costs when accessing the SO
pages which is not loaded in memory space or swapped out
into swap space. These non-shared SO pages occupied 36%
of the total memory space in our experiment.
Observation 3: Considering that the SO-symbol lookup

cost is not negligible while most applications do not share
the SO files, it is important which type of SO files to select
first as victims for swap-out or memory reclamation.
3.4 XML Processing Cost
Android applications generally include Java bytecode and
the resource files (e.g., drawable, raw, XML, font, etc.). The
Android Asset Packaging Tool (AAPT) [20] bundles the re-
source files into resource packages. At this time, the AAPT
performs conversion processes described in XML files (e.g.,
animated vector drawable files and XML layout attributes).
When the application framework creates a view hierarchy
from the XML file [24] to load the corresponding application,
it uses the compiled XML files on-the-fly. Therefore, com-
plex XML files involving the view hierarchy with deep and
diverse subsets significantly deteriorate the application load

Figure 5: SO-Symbol Lookup and XML processing cost for
launching applications in a system with NAND-swap

time. We have observed the XML processing cost by measur-
ing the XML-UI conversion latency at launch time with 15
top ranked applications from [26]. Figure 3(d) presents our
evaluation results. Surprisingly, the application framework
consumes approximately 12% of total XML-UI conversion
time on average to interpret the UI layouts of the launched ap-
plication from the compiled XML files. Meanwhile, OpenGL
ES, for drawing the GUI interface, spends 88% of the time on
average to write the XML data into GPU memory.
Observation 4: The XML processing cost is not negligible
anymore in modern mobile devices because the XML files of
mobile applications tend to become more complex nowadays.
3.5 Effect of SO-Symbol Lookup and XML

Processing on Application Launch Time
To clearly understand the cost mentioned in Observation
3 (§3.3) and 4 (§3.4), we measured the launch time of ap-
plications, which includes SO-Symbol Lookup and XML-UI
conversion time. As shown in Figure 5, the latency varies
for each application because each application has a differ-
ent composition; as the number of symbols or XML tags
in an application increases, it requires more time to launch
the application. For example, Cookie Run takes a long time
for SO-Symbol Lookup, which includes symbol search and
PLT/GOT entry creation, because it should link a lot of SO
files (i.e., symbols in SO pages) to launch the game. But, Twit-
ter shows the shortest time among the applications because
it uses only two dynamic SO files. Interestingly, the results on
XML-UI conversion have a slightly different pattern from the
above results; TikTok and WhatsApp reveal a long conver-
sion time even though they spend a short time for SO-Symbol
Lookup. We also explored how SO file and XML-UI process-
ing affect the application response/launch time. These two
costs were the sole factors affecting the application response
time. On the other hand, in case of the application launch
time, there are other factors (e.g., process initialization, user
environment setting, user layout initialization, and update
check) that can be explored, but we confirmed that they are
negligible while analyzing our evaluation results.

These observations and experimental results motivate us
to explore the design of SWAM.
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Figure 6: System overview of SWAM
4 Mobile-Aware SWAM
To alleviate the overheads while preserving the benefits of
existing schemes (ZRAM, Swap, LMKD, and OOMK), we
propose a new memory monitor and management scheme,
SWAM, formodernmobile devices. The design goal of SWAM
is to (1) reduce the launch time and response time of appli-
cations by orchestrating the behaviors of ZRAM and Swap
mechanisms, (2) efficiently reclaim the memory space occu-
pied by applications based on both the process attributes and
access patterns, and (3) postpone killing applications as long
as possible while optimizing it with the help of launch time
estimation. In order to introduce the concept of SWAMbefore
going further, Figure 6 shows the architectural overview of
SWAM, which is composed of Adaptive Swap, OOM Cleaner,
and EOOM Killer. As indicated in the figure, Adaptive Swap
simultaneously handles the zram-out/swap-out procedure
for achieving efficiency and better performance based on the
characteristics of not only SO pages but also normal pages
(see blue lines). OOM Cleaner secures enough free space
for swap operations without killing applications (see green
lines). Finally, EOOM Killer identifies victim applications
that can be quickly re-launched based on the hints of the
Launching Cost Manager and kills then in the worst case (see
red lines).
4.1 Adaptive Swap
As mentioned in §3.3, most mobile applications rarely share
their SO pages with other applications and the existing swap-
ping mechanisms [12] do not consider such internal charac-
teristics. However, the information on the SO pages which
are shared across applications can open up an optimization
opportunity for the swapping mechanism which determines
the victim pages in memory. SWAM exploits such an oppor-
tunity and prioritizes non-shared SO pages for swap-out.
Dynamic Swap Allocator: Unlike the traditional swap
mechanisms, Adaptive Swap can dynamically adjust the ca-
pacity of storage-class swap space in order to let the appli-
cation’s data be kept in the swap space as long as possible.
Besides, it can postpone the traditional OOMK operation,

which terminates applications for memory reclamation, be-
cause it is triggered only when the amount of swap space
is eventually insufficient; with Adaptive Swap, we can ad-
just the amount of swap space suitably and dynamically.
Adaptive Swap enables file systems to allocate swap space
on-demand. If an application requires more memory space
than the available one, Adaptive Swap scans the existing SO
pages in memory and move the data in the SO pages into
the files newly created in ordinary file system (we call them
swam files). Afterward, Adaptive Swap handles the swap
space accommodated in the files using normal file operations
such as read(), write(), and unlink().

In addition, Adaptive Swap uses a strict priority policy to
carefully select the victim SO pages for swap-out. The prior-
ity level of each SO page can be classified into the following
four categories according to the access or reference history
of the SO page, which will be used to determine the victim
SO page that is not likely to be reused in the future; (1) the
SO pages that have not been accessed recently (during the
predefined time interval), (2) the SO pages that have the ref-
erence count smaller than the predefined threshold, where
the reference count means the number of processes sharing
the SO page, (3) the SO pages that have been swapped out
but now loaded in memory by swap-in operation, and (4)
finally, among the remaining SO pages, the SO pages that
are using larger amount of memory space. Meanwhile, if
a page fault occurs after swap-out, Adaptive Swap issues a
swap-in operation on the corresponding swam files, and it
triggers unlink() operation when the file becomes empty by
a series of swap-in operations. Finally, if it is unable to obtain
sufficient memory space after swapping out all the SO pages
in memory to the swam files, Adaptive Swap begins scanning
the normal pages (e.g., heap, stack, and shared memory) even
though they have a high access frequency and swaps them
out in the same manner as stated above.
Unioning ZRAM and Swap Mechanism: In some cases,
the operations in Adaptive Swap can become the perfor-
mance bottleneck because they employ the storage interface
between the file system and the underlying storage devices.
To solve this issue, Adaptive Swap provides two independent
swap paths: (1) the (traditional) slow path that uses storage
devices based on the Swap mechanism for a SWAM region
and (2) the (accelerated) fast path that uses memory with
ZRAM mechanism for a ZRAM region. The slow path is de-
signed on the dynamic swap allocator where the capacity of
swap space in the underlying storage device can be dynam-
ically adjusted. Meanwhile, since even the fastest storage
devices (e.g., eUFS and eMMC) are slower than the DRAM
memory, the fast path is implemented for guaranteeing short
latency by following the design principle of ZRAM.

When the available memory space is insufficient, Adaptive
Swap determines the swap path for memory reclamation by
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examining the information on the victim page. First, if an SO
page is selected as a victim to be swapped out, Adaptive Swap
counts how many applications share the SO page and then
triggers the swap-out operation through the slow path in
case of no sharing (e.g., application’s SO pages). Otherwise,
it opens the fast path to perform the swap-out (i.e., zram-
out) of the victim SO page (e.g., platform’s SO pages) into
memory. Second, if one of the normal pages is selected as a
victim, it identifies whether the application owning the page
is response-time-critical or not. If the application is marked
as time-critical in advance by manufacturers, the victim page
is swapped out into memory via the fast path. Otherwise, the
page is swapped out via the slow path. Note that Adaptive
Swap first selects SO pages as victims to be swapped out
until treating the whole SO pages in memory, and thus, the
normal pages are rarely swapped out. The reason behind
such priority assignment is that Adaptive Swap was designed
based on the observations mentioned in §3.3.
Enabling Fast Swap-out: Increasing or decreasing the unit
size of unmap() operation has not been considered as a posi-
tive or negative factor in conventional swap-outmechanisms;
the existing swap mechanisms have used the unit size of a
fixed granularity. Unfortunately, the smaller unit size may
have a detrimental effect on the swap-out time because it in-
creases the possibility of memory reclamation being delayed
due to the interference with high-priority operations [54]. Es-
pecially, there may be a non-negligible delay in reclaiming a
large amount of memory space. To accommodate more adapt-
able swap-out, we propose a new unmap policy that enables
rapid memory reclamation by dynamically modifying the
unit size of the unmap() operation. To further understand

Algorithm 1:Memory unmap to speed up swap-out
1 unmap( ): begin
2 mem_unmap_unit = /proc/vm/dyn_unmap_sz; 1
3 Try mutex lock;
4 while memory region is not unmapped do
5 Task is uninterruptible (wait for completion);
6 Unmap (mem_unmap_unit); 2
7 Task is interruptible;
8 if a higher priority task exists 3 then
9 Get CPU resources;

10 Run a scheduler (a higher priority task); 4
11 end
12 end
13 Do mutex unlock;
14 end

our policy, we present its pseudocode in Algorithm 1. We
adopt the /proc interface to quickly transfer and modify the
unit size (i.e., mem_unmap_unit) of the unmap mechanism
on-the-fly ( 1 ). The unit size is passed to unmap() operation
to reset the mapping information of the virtual pages that
were not swapped out ( 2 ). We next check whether there are
a higher priority processes or not ( 3 ) and if so, one of the

existing higher priority processes will be instantly serviced
( 4 ). Due to the fact that the granularity of unmap() can be
adjusted at runtime, it is possible to improve the response
time of the swap-out operation by minimizing the number
of check operations ( 3 ). For instance, let us assume that
a swap-out process tries to free approximately 100 MB of
memory space. The traditional approach using unmap() with
fixed granularity should conduct the operation that verifies
the existence of higher priority processes ( 3 ) up to 3,200
times in the case that the fixed granularity is 32 KB. On the
other hand, our policy triggers the operation ( 3 ) only up
to 25 times by setting the unmap granularity to 4 MB in ad-
vance. Of course, as increasing the granularity, the unmap()
operation might require more time to complete. However,
we believe that such delay has little impact on the scheduling
of high-priority processes because they can be scheduled on
other CPU cores.
4.2 OOM Cleaner
SWAM should manage swap space in both memory and stor-
age devices to assist Adaptive Swap. To elaborately manage
the swap space, we design OOM Cleaner that is composed
Shared Object (SO) Eraser and Idle Swapped-Out Page (ISOP)
Eraser. SO Eraser and ISOP Eraser share the same goal of
reclaiming swap space, but they have different target and
policy. First, SO Eraser targets SO pages onmemory, and thus
its reclamation operation is delayed as long as possible to
allow applications to rapidly access the SO-symbols. Mean-
while, ISOP Eraser aims to reclaim swam files for minimizing
the delay involved in the process of making free rooms in
swap space and to secure free space in storage devices in
advance. Therefore, ISOP Eraser periodically runs to remove
swam files accommodated in storage devices. Note that OOM
Cleaner is orthogonal to the existing killing mechanisms in
that it reclaims only the swap space that is related to SO
pages (i.e., swap-clean) by exploiting the characteristics of
the pages obtained from our observation (e.g., non-shared
SO pages) instead of freeing all the memory space of an ap-
plication at once. OOM Cleaner selects victim SO pages for
swap-out in the order of access count and sharing count;
the access count is the primary criterion and the sharing
count is the tiebreaker. If anonymous pages such as heap,
stack, and shared memory are selected instead of the SO
pages as victim pages, user response time may negatively be
affected because these pages are accessed more frequently
by applications.
SO Eraser: If the available memory space is insufficient
even with the Adaptive Swap enabled, OOM Cleaner begins
scanning the SO pages that reside in the ZRAM space, and re-
claim the SO pages which are least shared by the applications
in the system. Note that, the swap-clean, which reclaims
the ZRAM space occupied by SO pages, is straightforward
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and less expensive than the aforementioned conventional
swap-out methods because it does not require additional
I/O operations. Unfortunately, if an application calls one of
the symbols belonging to the SO pages that were already
reclaimed, it incurs the overhead of building up the entries
for PLT and GOT, as explained in §3.3, so that the page fault
handler can reload the SO pages.
ISOP Eraser: Since the SWAM region, unlike the ZRAM
region, can be dynamically expanded, there is no need to
remove the SO page using the “least shared" strategy. In-
stead, ISOP Eraser removes SO pages that have not been
swapped-in for a long time to minimize the space waste in
the SWAM region. To avoid keeping no-access swam files
in the SWAM region, we designed ISOP Eraser that removes
the swam files containing SO pages (i.e., swap-clean) in the
storage devices (in LRU order) when the capacity of the stor-
age device is insufficient or when the files are not used with
a swap-in operation for a long time whose thresholds are
set in advance. To do so, ISOP Eraser runs periodically at
the pre-defined interval, which can be adjusted to a shorter
interval when the amount of available storage space falls
below the pre-defined threshold.
4.3 EOOM Killer
Memory space pressure has a detrimental effect not only on
the user experience (e.g., launch time and response time) but
also on the usage of hardware resources (e.g., CPU cycles,
storage devices, and power). In this case, eliminating some of
the running applications may be the best strategy to alleviate
the stress by reclaiming a substantial amount of memory
space at once, even if it involves a lengthy rebuilding time
to allocate memory space and load the application’s asso-
ciated data again [23, 25, 40, 68]. To pursue this principle,
EOOM Killer inherits the functions of the traditional OOMK
on the mobile device. Like OOMK, EOOM Killer eventually
comes into play when the available memory space is insuffi-
cient despite of running Adaptive Swap and OOM Cleaner;
of course, the operations of OOM Cleaner and EOOM Killer
can be overlapped. To extend the process of selecting a vic-
tim in OOMK, EOOM Killer leverages the relaunch cost of
SO-symbol lookup and XML-UI conversion, which is passed
through a communication channel between the user and
kernel-space (e.g., the /proc interface). Since the relaunch
cost differs widely depending on the composition of applica-
tions, it is determined by combining the results of SO-Symbol
Lookup Estimator andXML-UI Conversion Estimator, obtained
when an application is launched for the first time.
SO-Symbol Lookup Estimator: According to our obser-
vation in §3.3, popular applications mostly have SO files
included [21], which incur an extra overhead of SO-symbol
searching to construct PLT and GOT. We can improve the

process of selecting a victim application based on the over-
head; i.e., we can identify which application requires more
time for relaunch by calculating the cost of such run-time
overhead. For example, if an application needs a relatively
longer relaunch time, EOOM Killer gives positive chances for
it to reside in memory as long as possible. The SO-symbol
lookup cost can be estimated by the following equation:
𝑇𝑠 = 𝐿𝑜𝑜𝑘𝑢𝑝 𝑡𝑖𝑚𝑒 𝑓 𝑜𝑟 𝑎 𝑠𝑦𝑚𝑏𝑜𝑙

𝑇𝑟 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒 𝑎 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑜 𝑓 𝑎 𝑠𝑦𝑚𝑏𝑜𝑙

𝑇𝑙 = 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜 𝑓 𝑎𝑛 𝑆𝑂 𝑓 𝑖𝑙𝑒

𝑇 = (
∑︁

𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑦𝑚𝑏𝑜𝑙

(𝑇𝑠 +𝑇𝑟 )) +𝑇𝑙

Here, T is the total symbol lookup latency; the total sym-
bol lookup spends more time as the number of symbols for
lookup increases.
XML-UI Conversion Estimator: EOOM Killer tries its best
effort to select a victim while minimizing the impacts on user
experience. As applications’ user interfaces get more com-
plex, the XML processing cost increases, and EOOM Killer
is one of the complementary methods for reducing XML-
UI conversion overhead; our observations in §3.4 led us to
this conclusion. The estimator monitors the XML processing
cost in loading phases: (1) the time required to alter the UI
layouts and (2) the time required to render the contents on
the screen. The cost provides a hint as to which application
leads to more overhead, together with the lookup cost.
5 Evaluation
In this section, we evaluate SWAM with the popular mobile
applications so as to answer the following research questions:
(RQ1) how does each individual effort in SWAM help with
taking care of the available memory space and (RQ2) how
well does SWAM perform on the whole with modern mobile
devices?
5.1 Experimental Setup
In our experiments, we target Android platform because it is
one of the widely used mobile platforms, where its memory
shortage issue has detrimental effects on the user experience
in that the device is dedicated to a user and foreground ap-
plications in the device directly communicate with the user.
However, SWAM’s three major components are built on top
of the Linux kernel and the native C/C++ SO library, and so
they are completely compatible with and easily portable to
other Linux distributions.
Hardware and Software: We implemented the prototype
of SWAM in Linux kernel version 5.10 and Android Open
Source Project (AOSP) 12 [17, 30]; the total of 7,250 lines of
code were added or modified [51]. We also used real world
applications (top 15 applications from Google Play [26], as
shown in Table 1) that are frequently employed. The behav-
ior of swapping and killing approaches significantly depends
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Table 1: Applications and automated user interaction
Category Foreground applications Auto user inputs
Media Youtube, Netflix, Podcast Watch videos
Messaging Facebook, Twitter, TikTok, Browse and read posts

Skype, WhatsApp, Viber
News BBC News, NewYork Times Browse and read articles
Game CookieRun, AngryBird Play a stage
Internet Chrome, Firefox Browse and read posts

* Background applications: Media (Pinterest, Jellyfin, Kodi, Spotify), Mes-
saging (Instagram, Telegram, Discord, Snapchat), Note Organizer (Evernote,
Notion, OneNote, Colornote), Trip (Airbnb, Rentalcars, Skyscanner), Of-
fice (Dropbox, TeraBox, OneDrive, GoogleDrive), Game (Candy Crush Saga,
Clash of Clans, Subway Surers), and News (Google News, Reddit, Flipboard).

on memory capacity, and therefore, to investigate the pos-
sible impact of SWAM on limited hardware resources, we
performed the evaluation on a state-of-the-art high-end mo-
bile device (i.e., Google Pixel 6) and an emulated low-end
mobile device. The high-end device is equipped with Octa-
core ARM CPU, 8 GB memory, and 128 GB eUFS 3.1 stor-
age device. We compared SWAM with two baselines where
the original LMKD/OOMK is already enabled; (1) ZRAM
with 1 GB memory for swap space and lz4 algorithm [9]
for (de)compression, and (2) NAND-swap with 3 GB swap
partition reserved on the underlying storage device. For the
experiments on low-end device [60], we used the same high-
end device while limiting its CPU, memory, and eUFS storage
resources to Quad-core, 4 GB, and 64 GB, respectively; in this
case, the configuration of the baseline was adjusted to 512
MB for ZRAM and 2 GB swap partition for NAND-swap.
We also modified about 20 lines of code in the multi-core
scheduler and memory layout of the Linux kernel to enable
the Google Pixel 6 device operate as a low-end device with
limited system resources.
Methodology: For a fair comparison, we selected widely
used mobile applications as mentioned in Table 1, and con-
ducted experiments by following the four steps on both
low-end and high-end mobile devices: (1) We installed the
pre-selected 40 applications (15 real-world applications and
25 background applications) on the device to begin each
experiment. (2) We set up the initial test environment by
performing memory operations, which consume 256MB, to
bring the memory pressure situation. (3) We used adb and
logcat commands to collect evaluation results while perform-
ing automated tests with UI Automator that emulates UI
touches of users based on scripts. We performed the same
automated tests (i.e., step 3) every day for 1.5 hours with-
out a reboot process for 4 weeks. (4) Finally, we rebooted
the device to remove any effects from the previous exper-
iments and to reset the user configuration settings, which
include notifications, background data limits, and permission
restrictions. Note that we repeated the evaluation steps 2–4
whenever changing evaluation configurations (i.e., NAND-
swap, ZRAM, ZRAM/NAND-swap, and SWAM).

Figure 7: The average amount of free memory space
To imitate mobile users for realistic evaluation, we referred

SIMFORM’s premium user document [38]2 ; this document
covers users’ application preferences and usage patterns
(e.g., the average number of installed applications on mobile
phones and their average daily usage pattern). To the best
of our knowledge, it is well known that SIMFORM provides
good guidance on the pattern in Mobile & CE area. We set
the test time to 1.5 hours based on the description of "about
1 hour, 43 minutes a day" in Section 2 of the reference [39];
the test time is set conservatively to clearly confirm the ben-
efits of SWAM. Based on the description "an average person
has 40 applications installed on his phone" in Section 1 of
the reference [39], we installed 15 foreground applications
and 25 background applications, which are ranked higher
in popular application categories from Google Play Store
[26]. At this time, we performed an automated test for 1.5
hours on mobile devices and afterwards put the devices in
an idle state everyday. Even in the idle state, applications
consume memory space because they periodically run in the
background as explained in §3.2 (Memory Space Consump-
tion). As a result, some applications may have to be killed
over time for memory reclamation.
5.2 Contributions of Each Component
First, to understand the impact of each component of SWAM,
we conducted simple experiments that can figure out the
effectiveness of each component on low-end mobile devices.
Adaptive Swap: First, we confirm how much free memory
space can be secured by enabling only the Adaptive Swap.
Figure 7 traces the amount of free memory space of the
four swapmechanisms: NAND-swap, ZRAM, ZRAM/NAMD-
swap, and Adaptive Swap. Interestingly, we can see that the
average amount of free memory space decreases significantly
on the 3rd day for ZRAM ( a ), on the 7th day for NAND-swap
( b ), and on the 9th day for ZRAM/NAND-swap ( c ). These
trends mean that applications quickly consume free memory
space and they may negatively impact the performance of
mobile devices. On the other hand, Adaptive Swap guaran-
tees stable free memory space, at least 600 MB on average.
Such different results comes from the fact thatAdaptive Swap
gracefully takes the benefits of the slow path by dynamically
adjusting the swap space in the underlying storage device.

2Unfortunately, normal users cannot view this document. So, we cite the
publicly accessible document [39].
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Figure 8: The amount of SO pages that are reclaimed by OOM
Cleaner

Thus, we additionally measured the storage utilization so
as to verify how many swam files are dynamically created
and deleted to support the slow path in Adaptive Swap. As
a result, we found that the peak usage of the swap space
reaches 6.2 GB at most on the 64 GB storage device.
OOM Cleaner: Since OOM Cleaner is an auxiliary compo-
nent to secure swap space of SWAM, it can be enabled with
the conventional swap mechanisms. To clearly understand
the effectiveness of OOM Cleaner, we applied OOM Cleaner
with each of the four swapping mechanisms. Figure 8 shows
the total amount of SO pages that are reclaimed by OOM
Cleaner. For the evaluation of NAND-swap, we modified
ISOP Eraser so as to periodically reclaim swap space at the
granularity of SO page instead of swam file; NAND-swap
handles swap-in/out in the page unit. As expected, ZRAM
shows less efficiency in reclaiming SO pages compared to
other mechanisms because it has no swap space in storage
devices. In other words, ZRAM can only reclaim SO pages
allocated in memory on demand by SO Eraser, and thus it has
less chance of reclamation compared with the other schemes.
Meanwhile, ZRAM/NAND-swap shows better adaptability
than ZRAM or NAND-swap because SO Eraser and ISOP
Eraser independently reclaim swap space on memory and
storage devices, respectively. In this case, when the amount
of fixed swap space of NAND-swap is insufficient, SO pages
may be reclaimed by ISOP Eraser.OOMCleaner withAdaptive
Swap achieves the highest efficiency compared to conven-
tional swap schemes; it comes from the fact that ISOP Eraser
has more opportunities to secure the swap space than NAND-
swap because the swam files can dynamically be created by
Adaptive Swap. Note that, swam files are created by Adaptive
Swap and they are deleted by the background operations of
ISOP Eraser.
EOOMKiller: Now, let us add EOOM Killer to the four swap
mechanisms to see how long the applications can continue
to run without being terminated. Figure 9 plots the num-
ber of times each application was forcibly terminated by
LMKD/OOMK and EOOM Killer. In this figure, the number
on each bar means how many times each application was
killed and re-launched during running the experiments. As
expected, EOOM Killer contributes on the number of ter-
minations of all the applications for each swap mechanism.
For example, The number of terminations for Cookie Run
is decreased from 18 to 11 in NAND-swap, from 23 to 16 in

Figure 9: The number of kills with LMKD/OOMK (above) and
EOOM Killer (below)

ZRAM, from 13 to 8 in ZRAM/NAND-swap, and from 4 to 3
in Adaptive Swap.
As illustrated in Figure 9, EOOM Killer kills fewer fore-

ground applications compared to OOMK. However, it doesn’t
mean another process is forcibly killed instead. If EOOM
Killer has to kill an application for memory reclamation in
an extreme memory shortage situation, it just prefers to kill
applications having a short launch time; in our experiments,
the killed applications were mostly background applications.
This is because, unlike foreground applications, background
applications do not require GUI operations and user config-
uration settings for user interaction.

Meanwhile, Adaptive Swap rarely triggers LMKD/OOMK
or EOOM Killer compared with the other swap mechanisms
because it stably guarantees the available memory space
for applications, as shown in Figure 7. In addition, EOOM
Killer, when combined with Adaptive Swap, records the low-
est number of terminations for all applications. For example,
it kills Cookie Run only 3 times by considering the expensive
re-launch time on victim selection. We believe that these pos-
itive effects can lead it to the higher level of user experience.
5.3 Integrated Evaluations
This section describes the experimental results of the inte-
gration test. SWAM is compared to the three representative
solutions: NAND-swap, ZRAM, and ZRAM/NAND-swap.
To clearly measure the effectiveness of each component,

we injected the logcat command, which prints out log mes-
sages from the system, including memory traces, in the code
at the triggering point of each component and we connected
mobile devices with a terminal machine using Android De-
bug Bridge (ADB). Then, we performed evaluation tests while
collecting the raw data individually generated by each com-
ponent through ADB on-the-fly. In other words, the evalu-
ation results mentioned in §5.3.1 (# of killed applications)
and §5.3.2 (the application launch time and response time)
are based on the raw data collected from the final integra-
tion test. In addition, we performed extra experiments where
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Figure 10: The number of accumulated OOMKs on low-end
(above) and high-end (below) mobile devices

we separately turned on each component to independently
collect the message without any interference from other
components.
5.3.1 Number of Forcibly Killed Applications
We performed experiments on the number of times the
LMKD/OOMK operations are executed, to see how much
the SWAM improves the frequency of the operations that
forcibly kill running applications regardless of the user’s in-
tention. Figure 10 shows our experimental results on both the
low-end and high-end devices using an interaction scenario.
In this scenario, an automated user input test was conducted
by launching the applications listed in Table 1 and simulating
intensive user inputs for a duration of 1.5 hours; some pro-
cesses may be terminated due to memory pressure regardless
of their behavior during testing. We relaunched the killed
applications the next day to clearly understand how many
processes are frequently killed every day. Of course, since
background services and surviving applications consume
memory space for the remaining 22.5 hours, they can give a
negative effect on the available memory space.

In this figure, ZRAM collapses, losing its benefits after 12th
day on the low-end device ( A ) and 19th day on the high-end
device ( B ). The reason behind this is that the swap space
on memory becomes full, and thus LMKD/OOMK runs to
aggressively secure sufficient memory space. ZRAM/NAND-
swap that adopts both ZRAM and NAND-swap mechanisms
shows stable patterns like SWAM, but it progressively in-
creases the number of applications killed by LMKD/OOMK
over time. Meanwhile, SWAM shows an ideal pattern where
the killing operations to reclaim the memory space do not
appear until 9th day ( C ) and 13th day ( D ) in low-end and
high-end devices, respectively. In SWAM, only 2 applications
(on the high-end device) and 6 applications (on the low-end
device) were killed by EOOM Killer during 4 weeks. To gain
better understanding on the contributions, we performed the
same analysis on the effect of each component of SWAM as
we did in the unit test. We found the improvement of SWAM
comes from Adaptive Swap (61%), OOM Cleaner (36%, SO

Figure 11: Launch time of applications on low-end (above)
and high-end (below) mobile device

Eraser 27% + ISOP Eraser 9%), and EOOM Killer (3%), which
is obtained by analyzing the contribution of each SWAM
component on memory space securement.
5.3.2 Application Performance
The ultimate goal of SWAM is to ensure rapid interaction
between a user and a mobile device. To show the contribu-
tion of SWAM on the latencies, we assessed both application
launch time and response time which are measured for user
interactions with each application.
Application Launch Time: We observed how much the
SWAM reduces the launch time of applications on both high-
end and low-end devices. In general, the launch process
consists of a series of steps such as data loading, caching,
and initialization; we already investigated some of the initial-
ization costs (i.e., SO-Symbol Lookup and XML-UI Conversion)
in §3.5. Figure 11 shows the total time elapsed to launch each
application. The conventional approaches reveal different
results according to memory capacity (i.e., high-end and low-
end). However, SWAM generates similar results on both
devices because it efficiently secures sufficient free memory
space to launch applications by releasing superfluous space
in advance. In other words, SWAM can reduce the number
of swap-in/out operations while launching applications. As
shown in Figure 11, SWAM improves the launch time by 38%
(on the low-end device) and 36% (on the high-end device)
compared to the two baselines and ZRAM/NAND-swap. This
enhancement is the result of effective orchestration of the
three components of SWAM, especially accomplished by two
significant factors. One is that OOM Cleaner secures enough
free memory space to launch applications by releasing the
space that is unlikely to be used or shared in advance. This
advantage can help accelerate the launch time of applica-
tions that require a significant amount of memory at startup
and lower the number of swapping operations required dur-
ing a series of startup procedures. For instance, on Netflix,
which requires approximately 604 MB of memory to launch,
SWAM improves its launch time by 29% when compared to
ZRAM/NAND-swap on a low-end device. The other is that,
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Figure 12: The average response time of applications on low-
end (above) and high-end (below) mobile device

because SWAM permits Fast Swap-out, the launch process
is rarely interrupted in the middle of a swapping operation
that reclaims a large amount of memory space. Finally, we
also obtained the contribution of each SWAM component on
the launch time of applications: Adaptive Swap (53%), OOM
Cleaner (39%, SO Eraser 34% + ISOP Eraser 5%), and EOOM
Killer (8%).
Application Response Time: The response time may di-
rectly be dependent on whether the application is killed or
not, as it may involve the above-mentioned launch time.
Figure 12 shows the average response time of the 15 popu-
lar applications while using the aforementioned interaction
scenarios. In the figure, SWAM has a noteworthy response
time in all applications; it is the most effective method in
that it reduces application response time by 44% (on the low-
end device) and 41% (on the high-end device) compared to
the two baselines and ZRAM/NAND-swap. This startling
result is achievable because popular applications are seldom
chosen for space reclamation with the practical interaction
scenario. Therefore, the applications can instantly react to
users almost at all times. As a result, SWAM surpasses NAND-
swap by two times in some applications, including YouTube,
Skype, TikTok, WhatsApp, Viber, Cookie Run, and Angry
Bird. To ascertain the improvement in detail, we also tracked
contribution of each component of SWAM on the response
time and discovered that it comes from Adaptive Swap (43%),
OOM Cleaner (51%, SO Eraser 38% + ISOP Eraser 13%), and
EOOM Killer (6%).

Finally, to confirm the overhead, we analyzed the extra be-
haviors of SWAM by comparing it with the existing system
in detail. Then, we found that SWAM shows very small over-
head, which comes from the additional I/O operations for
storage-class swap in Adaptive Swap (1% slower), the ex-
tra operations for removing SO pages in OOM Cleaner (3%
slower), and the auxiliary costs for estimating execution time
of SO-Symbol lookup and XML-UI processing (2% slower).

Figure 13: The swap space used on ZRAM (above) and NAND-
swap (below). Numbers in orange color show how much the
swap space shrinks by SO Eraser and ISOP Eraser.

But, we believe this is negligible and the overhead is over-
shadowed by the performance advantage of SWAM (41%
faster application response time).
6 Discussion
SWAM dynamically adjusts the swap space in the file system,
by increasing or decreasing the amount of available swap
space. Unfortunately, SWAM has an intrinsic constraint that
precludes users from using the storage space consumed by
swam files. When the amount of space occupied by swam
files increases, this issue can lead to new space competitions
between users and SWAM. For example, the file system pos-
sibly may not allow for Dynamic Swap Allocator to add a
new swam file because of the peak utilization of the stor-
age devices. But, SWAM attempts to provide appropriate
amount of free storage space in practical scenarios by or-
chestrating the functions of its three components. Figure 13
depicts the amount of swap space that is reclaimed by SO
Eraser and ISOP Eraser; they reclaim the swap space when
the amount of swap space in use exceeds the ZRAM capacity
or when swam files are not utilized during a certain amount
of time. Two configurations (i.e., the ZRAM capacity and
the time period) can be adjusted considering the hardware
characteristics of the mobile device and they can be defined
by the manufacturer. Our simple experimental results show
that SWAM can safely conserve memory and storage con-
sumption; SO Eraser and ISOP Eraser reduced the size of
swap space by 0.48 GB and 1.63 GB, respectively. Theoreti-
cally, SWAM might consume a lot of storage space to secure
free space on memory. However, as shown in Figure 13, we
believe that it is unlikely to occur in real-world situations
because SWAM systematically reduces the possibility of the
aforementioned issue by freeing storage space with ISOP
Eraser in advance.
Most mobile applications save memory space by using

SO pages that share the memory space. Therefore, if ap-
plications are designed without SO pages, they may waste
memory resources significantly. However, even in the case
that the applications do not use SO pages, we believe some
components of SWAM (i.e., Dynamic Swap Allocator, Fast
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Swap-out module for Adaptive Swap, and EOOM Killer) are
still valuable. Also, whenmore and more SO pages are shared
among the applications, SWAM becomes more important
and efficient in that the number of swap in/outs is reduced
by keeping most shared SO pages in memory.
7 Related Work
This section discusses swapping (e.g., RAM, NVRAM, and
NAND flash) and killing strategies, relevant to our work.
RAM.Asmentioned before, the RAM-based swapping mech-
anism is one of the common approaches to speed up swap-
ping operations. ZRAM [66] and Zswap [11] are designed to
use DRAM as their swap space instead of the storage devices
to speed up swapping operations. In addition, they efficiently
save the available swap space by compressing pages to be
swapped out and storing them in compressed format. To
further secure the available memory space, ezswap [41] al-
lows to swap out not only anonymous pages but also pages
mapped to the files.
NVRAM. NVRAM (e.g., PRAM, RRAM, and STT-MRAM) is
considered to be suitable for swap devices because of its pos-
itive features such as short latency, low power consumption,
and high density. Unlike SWAM, K. Zhong [69] proposed
an NVRAM-based swap technique for fast swapping. How-
ever, because NVRAM has a capacity problem in comparison
to NAND flash, it is still much more expensive to replace
NAND flash with NVRAM due to its higher manufacturing
cost. Therefore, the industry is still adopting NAND flash-
based swap devices, while using compressed memory as a
swap cache when necessary [6, 11, 57, 58].
NAND flash. Many efforts have been made for efficient
swapping that can keep the state of running applications on
NAND flash storage devices. Flash-aware Linux Swap [53]
controls I/O patterns to mitigate the endurance issue of the
flash storage devices. Marvin [46] modifies Android Run-
Time (ART) to make a set of efforts for selecting the pages
unused for a long time as victims. Meanwhile, SmartSwap
[71] predicts which applications will not be used in the fu-
ture and reclaims the pages belonging to the applications in
the swap-out phases.
Killing Techniques. The traditional low memory killer
identifies victim processes based on their priority and the
amount of pages they have. Android LMKD [13, 25, 48, 68]
uses the OOM score of applications to forcefully kill some
processes in the user space. SmartLMK [42] and POA [65]
supply some statistics and application usage patterns in-
dicating the launch time and the frequency of application
activations to the operating system as a hint, so that the op-
erating system can efficiently identify and eliminate victim
processes. If the available memory space is not sufficient de-
spite of running LMKD operations, OOMK [10] is triggered
with its heuristic policy to avoid system shutdown. However,

the LMKD/OOMK approach irritates mobile device users
by forcibly closing user applications regardless of the user’s
intention.
To prevent the coercive termination of processes by the

kernel-mode killer, Hybrid swapping [33] and SEAL [49] offer
a two-level swapping technique based on ZRAM and NAND-
swap. However, these solutions concentrate on application
launch time and do not address application response time or
dynamic swap space.
Meanwhile, App hibernation [29] which is suggested in

Android 12 has a similar mechanism to SWAM in that it can
take out memory space from certain applications. But, unlike
SWAM, it focuses on suspending dormant applications that
has been idle for a long time. On the other hand, SWAM
tries to secure free memory space by reclaiming even the SO
pages of recently executed applications without suspending
the applications (see §4). Therefore, SWAM and App hiber-
nation may target different applications, and we believe that
both can collaboratively operate.

Conventional studies have focused on pre-processing tech-
niques that should be performed in advance to optimize the
application performance on the mobile platform. On the
other hand, our work accelerates application launch time
and response time by combining the swapping and killing
operations concinnously to enable fine-grained and efficient
memory management on mobile devices.
8 Conclusion
We carefully revisit the conventional memory management
techniques in mobile platforms. We highlight the structural
limitations of the traditional swapping and killing mecha-
nisms which operate independently, and propose a state-of-
the-art memory management technique that complements
the traditional schemes. To improve application responsive-
ness even in low memory conditions on mobile devices, we
not only preserve the process state by trying to eliminate
only the SO pages that have been inactive for a long time, but
also reduce the frequency of swap-in/outs considerably. As a
result, even when a mobile device is under memory pressure,
it may provide faster application launch time (36% faster)
and faster response time (41% faster) than the conventional
schemes, which shows significant positive impact on user
experiences.
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